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Introduction
Liver fibrosis can occur secondary to chronic hepatocel-
lular injury, related to multiple causes, the most common 
being fat infiltration, chronic viral infections, and alcohol 
abuse. Less prevalent causes include liver iron overload. 
Higher liver iron uptake can also be a consequence of 
chronic liver diseases, which ultimately contributes to 
hepatocellular damage and carcinogenesis.1,2 Although 
liver biopsy is the current gold-standard for the diagnosis 
and staging of liver iron overload, liver fat deposition, and 
fibrosis, it has limitations, most related to sampling errors 
and only moderate interreader agreement.3–6 Percutaneous 
liver biopsy is also an invasive procedure with potential 
risks and unsuitable for consecutive routine follow-up 

assessment.4 To address liver pathologies non-invasively, 
novel imaging quantification techniques have been the 
focus of extensive research. T2* and R2* calculations 
using conventional MRI relaxometry can indirect deter-
mine liver iron content. Relaxometry sequences such as 
IDEAL-IQ® (Iterative Decomposition of water and fat 
with Echo Asymmetry and Least-squares estimation) 
uses multipeak fat corrections instead of magnitude-only 
data fitting providing rectification for inaccurate results 
often caused by the presence concomitant liver fat deposi-
tion. By assessing the liver fat content for bias correction, 
IDEAL-IQ® provides for the same acquisition proton-den-
sity fat fraction images with corresponding quantification 
parametric maps.3,7 MR elastography (MRE) is an imaging 
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Objective:  To evaluate the agreement of three MR elas-
tography (MRE) sequences in patients undergoing liver 
MRI for clinical care. 
Methods:   A cross-sectional retrospective study was 
performed with 223 patients referred for liver MRI, 
including 12 patients with liver iron overload. Data 
obtained with spin-echo (SE) and gradient-echo (GRE) 
MRE sequences were compared. Multiple linear regres-
sion adjusted for the presence of liver fat was also 
performed to assess the correlation between fat infil-
tration and stiffness measurements results. Agreement 
between two SE sequences was assessed in patients 
with liver iron overload. 
Results: We found strong correlation between the GRE 
sequence and two SE sequences. Spearman's correla-
tion coefficients between the GRE, SE, and SE-EPI MRE 
sequences in patients with liver R2* <75Hz were 0.74, 

0.81, and 0.80. GRE-MRE failed in patients with liver R2* 
> 75 Hz. In this subgroup, the correlation coefficient 
between both SE-MRE sequences was 0.97. Liver fat did 
not interfere with the results.
Conclusion: In clinical setting, there is a high correlation 
between the GRE and SE MRE stiffness measurements, 
independently of the degree of liver fat infiltration meas-
ured by PDFF. A strong correlation between SE-MRE 
sequences is found even in patients with iron overload. 
Advances in knowledge: Our study addresses liver iron 
and fat content simultaneously to describing the tech-
nical feasibility and correlation between different MRE 
sequences in consecutive unselected patients refereed 
for liver MRI. EPI SE-MRE should be considered an 
optimal alternative to assess liver fibrosis in patients 
in whom GRE-MRE failures, such as iron-overloaded, in 
pediatric, elderly, or severely ill populations.
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technique that noninvasively assesses the mechanical properties 
of organs and tissues and can indirectly measure tissue stiffness. 
In the liver, stiffness tends to increase with collagen deposi-
tion and MRE results accurately correlates with the histology 
fibrosis grades.8,9 Different MRE techniques are applicable 
and provided by different vendors. The most widely available 
commercial MRE technique is based on gradient-echo (GRE) 
sequences. GRE MRE has been shown to be a very precise tool 
to evaluate liver fibrosis in large cohort studies and meta-anal-
ysis.10–13 However, in the presence of iron overload, the conven-
tional GRE MRE technique fails due to T2* dephasing and signal 
loss from the liver.14 GRE MRE sequences can also show poor 
results in patients with larger body habitus due to signal loss and 
limited encoding of the shear waves in the deeper areas of the 
liver.15 As chronic liver disease is often associated with liver iron 
overload and obesity, radiologists should be aware of the poten-
tial limitations of GRE-based techniques and how other proto-
cols using spin-echo (SE) sequences can potentially improve 
results. SE-based MRE sequences are intrinsically insensitive 
to T2* susceptibility due to the presence of a refocusing pulse 
and low TE value. Nevertheless, SE acquisitions can be longer 
than the equivalent GRE acquisitions, needing longer breath-
holds or serial breath-holds in a short interval, a major limita-
tion especially in pediatric, elderly, or severely ill populations.15 
Echo-planar imaging (EPI) is a fast MRI technique that, by 
obtaining all spatial-encoding information in a single radio-fre-
quency (RF) pulse, allows more rapid acquisition times with less 
motion artifacts.16 SE MRE acquisitions performed using EPI 
have a rapid readout, hence, faster acquisition times with fewer 
or shorter breath-holds required.14,16

Either for iron, fat and liver fibrosis assessment, available data in 
the literature have shown a high accuracy of non-invasive MRI 
quantification techniques in correlation to histology as a refer-
ence standard.9–11,17–20 This makes a sufficient solid ground to 
justify the absence of an independent invasive reference standard 
such as liver biopsy in chronic liver disease-related studies.21,22

This study was designed to evaluate the agreement of three MRE 
sequences (one GRE and two SE) in patients undergoing liver 
MRI for clinical care. Multiple linear regression adjusted for 
the presence of liver fat was performed to assess the correlation 
between fat infiltration and stiffness measurements results. As 
a secondary aim, we tested the agreement between the two SE 
sequences in patients whom the GRE sequence has failed due 
to the presence of liver iron overload, as an alternative for liver 
fibrosis detection in this population.

methods and Materials
This cross-sectional retrospective study was designed using 
data from patients referred for liver MRI as part of their clin-
ical care, either for diffuse liver disease or focal liver lesions, 
from December 2016 to December 2017. The institutional 
review board approved the study, and the requirement to 
obtain written informed consent was waived for retrospective 
review of data from patients who underwent clinically indi-
cated MRE.

Subjects
Of a total of 225 patients, two patients were excluded from the 
analysis due to significant motion artefact image degradation. 
A total of 223 patients met the inclusion criteria as follows: (i) 
had liver R2* and proton-density fat fraction estimations deter-
mined by a three-dimensional volumetric imaging sequence 
(IDEAL-IQ®), (ii) acquisition of the MRE pulse sequences in 
our clinical protocol with at least two of the sequences having 
the post-processed data available for shear wave stiffness 
measurements.

Imaging technique
All patients were scanned in supine position in a 1.5T magnet 
(450W, GE, Milwaukee, WI). Imaging protocol consisted of two 
main image blocks. First, a standard abdomen MRI protocol 
(axial GRE T1  weighted in-phase/opposed-phase, T2  weighted 
SSFSE, diffusion weighted imaging (b = 50, 750), pre- and 
post-intravenous gadolinium administration fat-saturated 
T1  weighted spoiled-GRE images. Second, quantitative MR 
images as follows: (i) Multiple-echo spoiled-GRE for PDFF and 
R2* estimation using IDEAL-IQ®, (ii) MRE images using three 
different acquisition sequences: (1) commercially available 2D 
GRE MRE sequence (GRE-MRE), (2) SE MRE sequence (non-
EPI), and (3) SE-EPI MRE sequence.

PDFF and R2* measurements
PDFF and R2* values were obtained using a multipoint Dixon 
technique (IDEAL-IQ®) with six echoes acquired with a low 
flip angle and a multipeak fat model to limit T1- and fat-re-
lated biases. Volumetric acquisition with 10 mm slices covering 
the whole liver were performed during a single breath hold to 
generate PDFF and R2* parametric maps. Measurements were 
performed by one reader (abdominal radiologist with 10 years 
of experience). To maintain consistency, a 5 cm2 round region 
of interest (ROI) was placed over the right liver lobe, as central 
as possible aiming for the transition of segments V, VI, VII, and 
VIII, in all cases, according to anatomical landmarks, avoiding 
major liver vessels, focal lesions, and vicinity to liver margins, 
fat or gas. We categorized liver fat deposition based on PDFF 
measurements according to cut-offs previously described in the 
literature5,7,20 as follows: 0 = no steatosis (PDFF: <5.0%), 1 = mild 
fat deposition (PDFF: 5.1 to 15.0%), 2 = moderate fat deposition 
(PDFF: 15.1–30.0, %), 3 = severe fat deposition (PDFF: >30.1%). 
For this study, we considered R2* values higher than 75 Hz at 
1.5T as a cut-off value to determine abnormal liver iron content. 
This threshold was defined based on the observation that most 
of the GRE-MRE acquisitions failed in patients with R2* values 
higher than 75 Hz and being a sufficiently high value to assure 
iron overload despite variations reported in the literature.

MRE stiffness measurements
All patients were scanned using three different MRE sequences 
in the same examination, as follows: (i) a commercially avail-
able 2D GRE MRE sequence [MR-Touch® GE, Milwaukee, 
WI] (named “GRE-MRE”), (ii) a SE (non-EPI) MRE sequence 
(named “SE-MRE”), and (iii) a SE-EPI MRE sequence (named 
“EPI-MRE”). MRE sequence parameters are provided in Table 1. 
Total scan times for the three MRE sequences were 55, 69, and 
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30 s, respectively. All sequences were acquired using appropriate 
concatenations to assure a maximum breath-hold time of ≈  
15 s. Therefore, the number of breath-holds for each of the used 
sequences were 4, 5, and 2. For assessing liver fibrosis, the same 
reader drew ROIs over the MRE-generated magnitude images. 
Two 5 cm2, round ROIs were placed over the right liver lobe at 
the same position in all sequences (copy-pasted), also avoiding 
large vessels, focal lesions, the gallbladder or the region imme-
diately below the driver. During ROIs positioning to assess liver 
fibrosis the reader was blind to PDFF and R2* parametric maps 
so as not to be biased by its results. ROIs were carefully placed 
within regions of high confidence indicated by the reconstruc-
tion algorithm over the parametric maps where the propagating 
waves had both good amplitude and a clear dominant propaga-
tion direction. Overall, liver stiffness was calculated by averaging 
the mean shear stiffness values from both ROIs in each individual 
patient. Five fibrosis grades were defined according to previously 
published data in the literature as follows: F0 (<2.9 kPa), F1  
(3.0–3.5 kPa), F2 (3.6–4.2 kPa), F3 (4.3–5.1 kPa), F4 (>5.1 
kPa).12,23 However, we have also divided the stiffness results into 
three categories for clinical significance of liver fibrosis. Patients 
with liver stiffness of <2.9 kPa where scored as no fibrosis; 
patients with stiffness values between 3.0–4.2 kPa were scored 
as mild to moderate fibrosis; and patients with stiffness values 
higher than 4.3 kPa were scored as advanced fibrosis.

Statistical analysis
The statistical software SPSS (SPSS Inc., Chicago, IL) was used 
for all analysis. For the descriptive analysis of the population, 
central tendency measurements were performed for the quan-
titative variables, and absolute and relative frequency distribu-
tions for the qualitative variables. Liver stiffness values obtained 
with all three MRE sequences were compared using the Spear-
man’s correlation test. GRE-MRE results were correlated to 

values obtained with both SE sequences in patients with liver 
R2* values < 75 Hz (no iron overload). The two SE sequences 
were correlated in this same cohort of patients, as well as, in the 
cohort of patients with liver R2* values higher than 75 Hz (iron 
overload). Multiple linear regression adjusted for the presence of 
liver fat was also performed to assess the correlation between fat 
infiltration and stiffness measurements results. p values < 0.05 
were considered as statistically significant.

Results
A total of 223 patients were included in the analysis. Age range 
was 26 to 85 years old (mean: 60.5 years) and the sex distribu-
tion was 133 male patients and 90 females. All patients were 
referred for clinical indicated MRI due to a variety of conditions, 
including diffuse and focal liver disease, such as NAFLD, liver 
iron-overload, chronic hepatitis of different etiologies, benign 
and malignant liver nodules etc. Distribution of liver steatosis 
grades based on MRI-PDFF results in the 223 patients was:  
0 = 64 patients, 1 = 95 patients, 2 = 47 patients and 3 = 17 
patients. 12 patients had abnormally elevated liver iron content 
defined as R2* values > 75 Hz. In these patients GRE-MRE failed 
to provide results due to very low signal-to-noise ratio (SNR) 
to allow image reconstruction or failure to indicate a high-con-
fidence area over the elastogram maps from which to perform 
our measurements (Figure  1). In five patients with R2* values 
lower than 75 Hz GRE-MRE also failed due to poor shear waves 
displacement visualization secondary to low SNR over the liver 
area related to other causes than iron-overload such as obesity 
and respiratory motion artifacts. Among these patients, three 
had body mass indices higher than 39.7 Kg m−2 and two could 
not hold an apnea for longer than 8 s.

Liver stiffness using the GRE-MRE sequence was evaluated in a 
total of 206 patients with the following fibrosis grade distribution: 

Table 1.  Imaging parameters for IDEAL IQ® and the three MRE sequences

IDEAL IQ® 2D GRE MRE (MR Touch®) 2D SE MRE 2D SE (EPI) MRE
FOV (cm) 40.0 42.0 42.0 42.0

Slice thickness (mm) 10 8.0 8.0 8.0

Slice spacing (mm) . 2.0 2.0 2.0

Number of slices N/A 4 4 4

Matrix 128 × 128 256 × 64 80 × 80 128 × 64

Phase FOV 0.8 1.0 1.0 0.8

NEX 0.5 1.0 1.0 0.75

TR (ms) 11.9 50.0 200.0 1000.0

TE (ms) 4.3 21.8 10.2 18.6

Parallel Imaging 1.0 1.0 1.0 2.0

Receiver bandwith (Hz) 100.0 31.25 62.5 250.0

MEG direction N/A MEG Direction Z MEG Direction Z MEG Direction Z

Total acquisition time (s) 17 55 69 30

Number of breath-holds 1 4 5 2

NEX, Number of excitations; TR, Repetition Time; TE, Echo Time; MEG, Motion Encoding Gradient; FOV, field of view; GRE, gradient-echo; MRE, 
MR elastography; SE, spin-echo.
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F0 (<2.9 kPa)—158 patients, F1 (3.0–3.5 kPa)—14 patients, F2 
(3.6–4.2 kPa)—10 patients, F3 (4.3–5.0 kPa)—7 patients, F4 
(>5.1 kPa)—16 patients. When stratified into mild to moderate vs 
advanced liver fibrosis, the distribution was: 158 patients with no 
fibrosis (F0), 24 patients with mild to moderate fibrosis, and 23 
patients with advanced fibrosis (F3/F4). Both SE sequences had 
enough SNR in all 223 patients to successfully provide magni-
tude images and parametric stiffness maps showing measurable 
areas with a confidence index higher than 95% (Figure 2). Using 
the mild to moderate vs advanced fibrosis stratification, distri-
bution using SE-MRE was: 165 patients with no fibrosis (F0),  
23 patients with mild to moderate fibrosis (F1/F2), and 23 
patients with advanced liver fibrosis (F3/F4). Distribution of 
the fibrosis grade for EPI-MRE using the same criteria was: 157 
patients with no fibrosis (F0), 25 patients with mild to moderate 
fibrosis (F1/F2), and 28 patients with advanced liver fibrosis 
(F3/F4). Regarding stiffness values in Kilopascal using the three 
different sequences, the median was 2.3 kPa (min. 1.2 kPa – max.  
13.1 kPa) for GRE-MRE, 2.2 kPa (min. 1.3 kPa – max. 13.7 kPa) 
for EPI-MRE, and 2.1 kPa (min. 1.0 kPa – max.11.7 kPa) for 
SE-MRE. We found excellent correlation between the GRE-MRE 
sequence and both SE sequences in patients with R2* < 75 Hz. 
Spearman’s correlation coefficients between the GRE-MRE and 
SE-MRE sequences, the GRE-MRE and EPI-MRE, and the two 
SE-MRE sequences in this subset of patients were 0.74, 0.81, and 
0.80, respectively. In the subset of patients with R2* values higher 
than 75 Hz, the correlation between the SE sequences (SE-MRE 

and MRE-EPI) was 0.97 (Figure 3). Correlation results were not 
interfered by the presence of liver fat infiltration. Linear regres-
sion analysis and multiple linear regression analysis adjusted 
for the presence of liver fat for comparison of stiffness results 
obtained by GRE-MRE  vs  SE-MRE, GRE-MRE  vs  EPI-MRE, 
SE-MRE  vs  EPI-MRE are shown in Figure 4.

Discussion
MRE has established itself as a noninvasive diagnostic tool for the 
assessment of hepatic fibrosis. Our results show strong correla-
tion between different MRE sequences in clinical indicated liver 
MRI in a variety of conditions including liver fat infiltration and 
iron overload. Most widely commercial available implementa-
tion of the technique uses a fast GRE-based 2D MRE sequence. 
While a convenient and robust method, it has limitations related 
to lower SNR, longer scanning times and failure in patients with 
liver iron overload. SE sequences can potentially overcome some 
of these limitations by providing higher SNR and intrinsically 
insensitive to T2* susceptibility effects. At our institution, all 
patients referred for liver MRI as part of clinical care are eval-
uated for the presence of iron overload, liver fat deposition 
and liver fibrosis, the latter performed by using three different 
MRE sequences. We conducted a study to evaluate the technical 
feasibility and agreement between these sequences (a commer-
cial available GRE-MRE sequence and two SE-based MRE 
sequences) for liver stiffness assessment in patients undergoing 
clinically indicated liver MRI for various conditions. For routine 

Figure 1. (a) A 36-year-old male with hereditary hemochromatosis (HFE gene: C282y/C282y). IDEAL-IQ® R2* parametric map 
shows diffuse high signal intensity in the liver indicating high liver iron content. R2* = 355 Hz. Same patient (b, c): Elastographic 
images for whom the commercial GRE-MRE measurement failed. The significant signal loss and low SNR over the liver area sec-
ondary to the presence of iron causes poor image quality and low confidence in the stiffness estimates. (b) Wave image: The 
presence of iron causes significant signal loss over the liver area and poor shear waves displacement visualization leading to 
invalid shear stiffness estimates. (c)  Elastogram: SNR is below a value that permits image reconstruction over the liver area result-
ing in a distorted image. (d, e) Same patient, successful SE-EPI-MRE sequence elastographic images: Despite the high iron liver 
content, the SNR is high enough to provide valid stiffness measurements. (d) Wave image: High SNR permits good visualization 
of shear waves. (e) SE-EPI-MRE parametric map (color elastogram map)—High SNR permits shear stiffness to be successfully cal-
culated for parametric map reconstruction. EPI, echo-planar imaging; GRE, gradient-echo; MRE, MR elastography; SE, spin-echo; 
SNR, signal-to-noise ratio.

http://birpublications.org/bjr


5 of 9 birpublications.org/bjr Br J Radiol;91:20180126

BJRFull paper: Agreement of GRE and SE MRE in unselected patients

clinical examinations, threshold values for liver iron quantifica-
tion are often extrapolated from the literature without individual 
calibrations, leading to variability of adopted threshold of T2* and 
R2* values. For this study, we considered R2* values higher than  
75 Hz at 1.5 Tesla as a cut-off value to determine liver iron over-
load. Although we are aware that much lower thresholds have 
been used and previously described,24,25 we chose to consider 
a higher value to guarantee a consistent cut-off that would 
undoubtedly be related to the presence of iron overload. Also, we 
observed that the GRE-MRE acquisitions failed when R2* values 
were higher than 75 Hz due to significant signal loss. Regarding 
liver stiffness and fibrosis grading, there is some variety of 
thresholds in the literature, as other cut-off values have also 
been adopted in different studies.26,27 We hypothesize that these 
discrepancies may be related to the differences in the amount of 
collagen deposition and inflammatory grade within each fibrosis 
stage across different liver disease etiologies. We have based our 
analysis on the values described by Chang et al and Srinivasa et 
al.12,23 Both works were not limited to a specific condition or 
population, therefore, more suitable to the diversity of our popu-
lation.23 However, we also stratified the results in three categories 
of liver fibrosis, based on clinical significance. We believe that 
due to some variations in the literature regarding the exact cut-off 
values for any given fibrosis grade, the latter categorization may 

be more suitable and have stronger implication for the unse-
lected sort of our population. To the best of our knowledge, 
no previous work has addressed simultaneously liver iron and 
fat quantification techniques and different MRE sequences in 
an unselected population undergoing clinical indicated MRI. 
Mariappan et al has tested two similar SE-MRE sequences in 
comparison to GRE-MRE in a clinical setting, however, not 
addressing liver iron and fat quantification sequences.14 Some 
of the largest meta-analysis of individual participant data have 
either selected patients with a prior known diagnosis of chronic 
liver disease or other specific populations.26,28 When selecting 
only patients with known chronic liver disease the mean liver 
stiffness across the cohort tends to be higher than the average 
values in the general population. Therefore, individuals with 
unknown chronic liver disease and/or who present with only 
subtle liver stiffness alterations, tends to be not addressed in 
these results. We found high correlation between all three MRE 
sequences in accordance with previous studies in the literature 
in different clinical scenarios.14,15,29,30 The presence of fat and 
various degrees of liver fat deposition did not interfere with the 
correlation between MRE sequences. In patient with R2*  <  75 
Hz correlations were 0.80 between GRE-MRE and EPI-MRE and 
0.89 between GRE-MRE and SE-MRE. We found strong correla-
tions between SE sequences (EPI-MRE  vs  SE-MRE) (0.98 and 

Figure 2. A 44-year-old male, ferritin > 2800 ng/dL. (a) IDEAL-IQ R2* parametric map shows diffuse high signal intensity related 
to high iron content. Liver R2*= 110 Hz. (b–d) Elastograms color maps of estimated stiffness with a checkerboard mask covering 
areas that have a confidence index lower than 0.95 and should be avoided when drawing an ROI to report the stiffness. Success 
rates and image quality are higher in SE sequences, despite the high iron liver content. (b) GRE-MRE color elastogram map shows 
significant low SNR over the liver resulting in distorted images and no valid areas within the algorithm generated confidence inter-
val (0.95). (c, d) – SE MRE and Spin-echo EPI-MRE sequences parametric maps (elastogram) - High SNR permits shear stiffness to 
be successfully calculated for parametric map reconstruction and values are within the algorithm generated confidence interval 
(0.95). ROIs should be drawn within this areas for stiffness measurements. EPI, echo-planar imaging; GRE, gradient-echo; MRE, 
MR elastography; ROI, region of interest; SE, spin-echo; SNR, signal-to-noise ratio.
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0.88, respectively) in patients with and without iron overload. In 
our study, 12 patients with R2* values higher than 75 Hz could 
not have their liver stiffness determined using GRE-MRE due 
to significant signal loss related to susceptibility. In other five 
patients GRE-MRE failed due to low SNR of causes other than 
liver iron overload. In this study we used a standard commercial 
available GRE-MRE sequence provided by the scanner manufac-
turer (MR-Touch® GE, Milwaukee, WI). We did not change any 
of the preset parameters so to evaluate the sequence’s strengths 
and limitations, not based on theoretical research, but focusing 
on daily practice clinical routine. Using a mechanical vibration 

frequency of 60 Hz and same frequency motion encoding gradi-
ents, the preset TE value in this sequence was 21.8 ms. This is 
a sufficiently long TE to result in lengthy acquisition times, as 
well as, to disserve tissues with short T2 values or areas with 
high susceptibility leading to significant signal decay.31 Hence, 
when signal decay was more pronounced due to iron over-
load, the SNR was very poor on GRE-MRE images. In compar-
ison, with SE MRE acquisitions no failure was observed in all 
patients included in our analysis. Although GRE-MRE and SE 
MRE show equally good diagnostic performance in staging liver 
fibrosis, success rates and image quality have been shown to be 

Figure 3. Correlation between liver stiffness measurements obtained using the GRE and SE MRE sequences in patients without 
liver iron-overload (R2* < 75Hz): (a) GRE-MRE and SE-MRE, (b) GRE-MRE and SE-EPI MRE, and (c) both SE MRE sequences. (d) 
Correlation between SE MRE sequences in patients with elevated liver iron content (R2* > 75Hz). EPI, echo-planar imaging; GRE, 
gradient-echo; MRE, MR elastography; SE, spin-echo.

Figure 4. Tables show linear regression analysis and multiple linear regression analysis adjusted for the presence of liver fat for 
comparison of stiffness results obtained by (a) GRE-MRE and SE MRE sequences and (b) SE-MRE and EPI-MRE in patients with 
R2* < 75Hz. (c) Rgression analysis and multiple linear regression analysis adjusted for the presence of liver fat for comparison of SE 
MRE sequences in patients with R2* > 75Hz. EPI, echo-planar imaging; GRE, gradient-echo; MRE, MR elastography; SE, spin-echo.
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As liver MRE continues to be established as a reliable tech-
nique for assessing fibrosis noninvasively, it should be offered 
to all patients with chronic liver disease. This should include 
patients with liver iron overload and severely ill individuals with 
difficulties in performing long breath-holds for image acquisi-
tion. Radiologists, hepatologists and other referring physicians 
involved in the care of chronic liver diseases should be fully aware 
of the applicability of these sequences in evaluating fibrosis as 
alternatives to the most widely available GRE-MRE sequences. 
Our study has some limitations. First, we did not perform an 
invasive assessment of the liver fat and iron content, neither 
fibrosis grade as a standard of reference. We understand that the 
extensive data available in the literature describing the use of 
MRI as a reliable and accurate tool to noninvasively assess these 
conditions is a sufficiently strong foundation on which to base 
our analysis. Another limitation of our study is the small number 
of patients with liver iron overload among the total number of 
included individuals, which limits the analysis regarding this 
specific condition.

In conclusion, we found a high correlation between the GRE and 
SE MRE stiffness measurements. Strong correlation between the 
three MRE sequences were seen independently of the degree of 
liver fat deposition measured by PDFF. Correlations between the 
EPI and non-EPI SE MRE sequences in patients with iron over-
load was also high. As GRE-MRE sequences are subject to higher 
failure rates due to high iron liver content and other limitations, 
SE-MRE sequences should be considered as an adequate alter-
native to assess liver fibrosis. Also, considering the advantages 
of faster acquisition times, SE-based EPI-MRE sequences can 
be a more suitable approach to assess liver fibrosis in pediatric, 
elderly, or severely ill populations.
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